MUSCLE User Guide

Multiple sequence comparison by log-expectation
by Robert C. Edgar

Version 3.52
November 2004

http://www.drive5.com/muscle
email: muscle (at) drive5.com

MUSCLE is updated regularly. Send me an e-mail if you would like to be notified of new releases.

Citation:

Edgar, Robert C. (2004), MUSCLE: multiple sequence alignment with high accuracy and high
throughput, Nucleic Acids Research 32(5), 1792-97.

For a complete description of the algorithm, see also:

Edgar, Robert C (2004), MUSCLE: a multiple sequence alignment method with reduced time and
space complexity. BMC Bioinformatics, 5(1):113.

Table of Contents

3 g oo [0 ox o] o SRR 3
B O U T = SRS S 3
22 1S = = o] o SRR 3
2.2 MaKING AN AlIGNMENTeiieiieiieeee ettt b et e e s e et e b sbeebe e st e se e e e b e sbesbesbesaeese e e aneees 3
R I o L= T 0= 0SSR RR T R 3
S L G 0= o [4
W22 (00 Tz o a0 o) 4
2.6 ACCUIACY: CAVERL EIMPLONeeuveeeieeeeesieesieesteesteeteseeeseeesse e seesteeseesseesseesseesseensesneesneesseesseenseenseensessenssensses 4

P2 A 1 o= 1T oo 4
2.8 Refining an existing aligNMENtccooiiiiieiceecec e e e saesr e neese e e eneees 4
2.9 Using apre-CompULed QUILE TIEB........ccuicieieeeeceeeeee ettt et e sttt e e et esaesresnesneene e e eneees 4
2.10 Profile-profil@ @igNMENtco oottt s be b ene e e e e e 5
S o (U< g Tor o 1T £ g oo RS 5

O Lo o 01 RS 5
00 1 0T o 11] -SSP 5
3.1.1 AMINO BCIA SEQUENCESeeveeeieueeiereesteste et eteeeeeese e testesaessesaeeseeasessesaesaesbesaeaneeaseseseesaesseeneenseseneas 6
3.1.2 NUCIEOtIAE SEQUENCES...... .o eeeeeeeeie ettt ettt e ettt st st e e e e e te s aesaesbeeseeseese e eeseesbesneeneeneenseneas 6
3.1.3 DELErMINING SEQUENCE LY. ueeueeueereerieriesteeseseesaessestestessessesseessessessessessessesssessessessessessessesseessnssenses 6

G2 @ 11 o 11 B == PRS 6
3.2.1 SEQUENCE GIOUPING. .. vevereseeeseeeeaessessessessessesseessessessessessessesssessessessessessessesseessmssessessessessesssessnssenses 6

B3 CLUSTALW FOMMEL....c.viietiiieeeiesiesieie ettt sttt ettt sttt sttt sttt bttt et be s be e ebe b ne e 6
B3 Y S (o0 = | SO OSSPSR 6
o o I 1Y/ I o g1 7= TSP 7
AUSING MUSCLE ..ottt st e s bt e st e b st e se e b e st eseesenseneese st eseese st enensesteneesensenennn 7
4.1 HOW the @lgorithm WOIKSco.oiuiee et ettt sa e e e e 7
4.2 COMMEANG-1INE OPLIONS.eiteite ettt ettt ee e h et e st e e e besbesbesbeeneene e e e beseesbesaeeneeneeeeneas 8
e R I L= 0= = 6 o] (o SR 8
T g = =S o] o1 o o IR 8
4.5 The MAXNOUIS OPLIONocviieie ettt st eesa e e e teseestesseeseesae e entesteseenneeneenaeneenes 9

L R I V= e oo o) o 9
4.7 The profile SCOMNG FUNCLION ..ot st e e st sresne e enae e enees 9
RS DIF="o ol a7 I o] 0|11 42112 (Ko o [P 9
P2 IN g Tox 1o 0] o111 41174 4 o] o 1R 9
0 0 oo SRS 10
.10 PrOQIESS IMESSAGESeeeveeurerueeaueasueasseaaseaaseassssesaeasseaaseasseassesssessesssesasesasesassssssseessesssesnsesnsesssssessses 10
4.12 RUNNING OUL OF MEIMOY ...ttt sttt e s e et be bt ae e e eneeseesbesaesaesaeeneeneeneens 10

T S (00 1= oo 11 o OO RUSURSRN 11
I <ol oo T o= IS T o] oo APPSR 11

5 ComMMENG LiNE REFEIENCEcueieieieieee ettt et st s b e b ettt e e e seesbesbesbeeae e e annaneans 11

1 Introduction

MUSCLE is aprogram for creating multiple alignments of amino acid or nucleotide sequences. A range of
optionsis provided that give you the choice of optimizing accuracy, speed, or some compromise between
the two. Default parameters are those that give the best average accuracy in our tests. Using versions
current at the time of writing, my tests show that MUSCLE can achieve both better average accuracy and
better speed than CLUSTALW or T-Coffee, depending on the chosen options. Many command line options
are provided to vary the internals of the algorithm; some of these will primarily be of interest to algorithm
developers who wish to better understand which features of the algorithm are important in different
circumstances.

2 Quick Start

The MUSCLE agorithm is delivered as a command-line program called muscle. If you are running under
Linux or Unix you will be working at a shell prompt. If you are running under Windows, you should bein a
command window (nostalgically known to us older people as a DOS prompt). If you don't know how to use
command-line programs, you should get help from alocal guru.

2.1 Installation

Copy the muscle binary file to a directory that is accessible from your computer. That's it—there are no
configuration files, libraries, environment variables or other settings to worry about. If you are using
Windows, then the binary file is named muscle.exe. From now on muscle should be understood to mean
"muscleif you are using Linux or Unix, muscle.exe if you are using Windows".

2.2 Making an alignment

Make a FASTA file containing some sequences. (If you are not familiar with FASTA format, it is described
in detail later in this Guide.) For now, just to make things fast, limit the number of sequence in the fileto no
more than 50 and the sequence length to be no more than 500. Call the input file segs.fa. (An example file
named segs.fa is distributed with the standard MUSCLE package). Make sure the directory containing the
muscle binary isin your path. (If it isn't, you can run it by typing the full path name, and the following
example command lines must be changed accordingly). Now type:

nmuscle -in seqs.fa -out segs.afa

Y ou should see some progress messages. If muscle completes successfully, it will create a file segs.afa
containing the alignment. By default, output is created in "aligned FASTA" format (hence the .afa
extension). Thisisjust like regular FASTA except that gaps are added in order to align the sequences. This
isanice format for computers but not very readable for people, so to look at the alignment you will want an
alignment viewer such as Belvu, or a script that converts FASTA to a more readable format. Y ou can also
use the —msf command-line option to request output in MSF format, which is easier to understand for
people. If muscle gives an error message and you don't know how to fix it, please read the Troubleshooting
section.

The default settings are designed to give the best accuracy, so this may be all you need to know.

2.3 Large alignments

If you have alarge number of sequences (afew thousand), or they are very long, then the default settings of
may be too slow for practical use. A good compromise between speed and accuracy isto run just the first
two iterations of the algorithm. On average, this gives accuracy equal to T-Coffee and speeds much faster
than CLUSTALW. Thisis done by the option —maxiters 2, asin the following example.

nmuscle -in seqs.fa -out segs.afa -maxiters 2

2.4 Faster speed

The —diags option enables an optimization for speed by finding common words (6-mersin a compressed
amino acid al phabet) between the two sequences as seeds for diagonals. Thisisrelated to optimizationsin
programs such as BLAST and FASTA.: you get faster speed, but sometimes lower average accuracy. For
large numbers of closely related sequences, this option works very well.

If you want the fastest possible speed, then the following example shows the applicable options for proteins.
muscle -in seqs.fa -out seqs.afa -maxiters 1 -diags -sv -distancel kbit20_3
For nucleotides, use:

nmuscle -in seqs.fa -out seqs.afa -nmaxiters 1 -diags

At the time of writing, muscle with these options is faster than any other multiple sequence alignment
program that | have tested. The alignments are not bad, especially when the sequences are closely related.
However, as you might expect, this blazing speed comes at the cost of the lowest average accuracy of the
options that muscle provides.

2.5 Huge alignments

If you have avery large number of sequences (severa thousand), or they are very long, then the kbit20 3
option may cause problems because it needs arelatively large amount of memory. Better isto use the
default distance measure, which is roughly 2x or 3x slower but needs less memory, like this:

nuscle -in seqs.fa -out seqgs.afa -maxiters 1 -diagsl -sv

2.6 Accuracy: caveat emptor

Why do | keep using the clumsy phrase "average accuracy" instead of just saying "accuracy"? That's
because the quality of alignments produced by MUSCLE varies, as do those produced other programs such
as CLUSTALW and T-Coffee. The state of the art leaves plenty of room for improvement. Sometimes the
fastest speed options to muscle give alignments that are better than T-Coffee, though the reverse will more
often be the case. With challenging sets of sequences, it isagood ideato make several different alignments
using different muscle options and to try other programs too. Regions where different alignments agree are
more believable than regions where they disagree.

2.7 Pipelining
Input can be taken from standard input, and output can be written to standard output. Thisis the default, so
our first example would also work like this:

nuscl e < segs.fa > seqgs. afa

2.8 Refining an existing alignment

Y ou can ask muscle to try to improve an existing alignment by using the —refine option. The input file must
then be a FASTA file containing an alignment. All sequences must be of equal length, gaps can be
specified using dots"." or dashes "—". For example:

muscle -in seqs.afa -out refined.afa -refine

2.9 Using a pre-computed guide tree
The —usetree option allows you to provide your own guide tree. For example,

nuscle -in seqs.fa -out seqgs.afa -usetree nytree. phy

The tree must by in Newick format, as used by the Phylip package (hence the .phy extension). The Newick
format is described here:

http://evol ution.geneti cs.washington.edu/phylip/newicktree.html

WARNING. Do not use this option just because you believe that you have an accurate evolutionary tree

for your sequences. The best guide tree for multiple alignment is not in general the correct evolutionary tree.
This can be understood by the following argument. Alignment accuracy decreases with lower sequence
identity. It follows that given a set of profiles, the two that can be aligned most accurately will tend to be
the pair with the highest identity, i.e. at the shortest evolutionary distance. Thisis exactly the pair selected
by the nearest-neighbor criterion which MUSCLE uses by default. When mutation rates are variable, the
evolutionary neighbor may not be the nearest neighbor. This explains why a nearest-neighbor tree may be
superior to the true evolutionary tree for guiding a progressive alignment.

You will get awarning if you use the —usetree option. To disable the warning, use —usetree_nowarn instead,
eg.

muscle -in seqs.fa -out seqgs.afa -usetree_nowarn nytree. phy

2.10 Profile-profile alignment
A fundamental step in the MUSCLE agorithm is aligning two multiple sequence alignments. This

operation is sometimes called "profile-profile alignment”. If you have two existing alignments of related
seguences you can use the —profile option of MUSCLE to align those two sequences. Typical usageis:

nmuscle -profile -inl one.afa -in2 two.afa -out both.afa

The alignments in one.afa and two.afa, which must be in aligned FASTA format, are aligned to each other,
keeping input columns intact and inserting columns of gaps where needed. Output is stored in both.afa.

MUSCLE does not compute a similarity measure or measure of statistical significance (such as an E-vaue),
so this option is not useful for discriminating homologs from unrelated sequences. For this task, |
recommend Sadreyev & Grishin's COMPASS program.

2.11 Sequence clustering

Thefirst stagein MUSCLE is afast clustering agorithm. This may be of usein other applications. Typical
usageis:

nmuscle -cluster -in seqgs.fa -treel tree. phy

The sequences will be clustered, and a tree written to tree.phy. Options —weight1, —distancel, —cluster1 and
—root1 can be applied if desired. Note that by default, UPGMA clustering is used. Y ou can use
—neighborjoining if you prefer, but note that thisis substantially slower than UPGMA for large numbers of
seguences, and is also dlightly less accurate. See discussion of —usetree above.

3 File Formats

MUSCLE uses FASTA format for both input and output. For output only, it also offers CLUSTALW, MSF
and HTML formats using the —clw, —msf and —html command-line options.

3.1 Input files

Input files must be in FASTA format. These are plain text files (word processing files such as Word
documents are not understood!). Unix, Windows and DOS text files are supported (end-of-line may be NL
or CR NL). Thereis no explicit limit on the length of a sequence, however if you are running a 32-bit
version of muscle then the maximum will be very roughly 10,000 |etters due to maximum addressable size
of tables required in memory. Each sequence starts with an annotation line, which is recognized by having

agreater-than symbol ">" asitsfirst character. Thereis no limit on the length of an annotation line (thisis
new as of version 3.5), and there is no requirement that the annotation be unique. The sequence itself
follows on one or more subsequent lines, and is terminated either by the next annotation line or by the end
of thefile.

3.1.1 Amino acid sequences

The standard single-letter amino acid alphabet is used. Upper and lower caseis allowed, the case is not
significant. The special characters X, B, Z and U are understood. X means "unknown amino acid", B isD
or N, ZisEor Q. U isunderstood to be the 21st amino acid Selenocysteine. White space (spaces, tabs and
the end-of-line characters CR and NL) is allowed inside sequence data. Dots"." and dashes"—" in
sequences are alowed and are discarded unless the input is expected to be aligned (e.g. for the —refine
option).

3.1.2 Nucleotide sequences

Theusud letters A, G, C, T and U stand for nucleotides. The letters T and U are equivalent asfar as
MUSCLE is concerned. N is the wildcard meaning "unknown nucleotide". R means A or G, Y means C or
T/U. Other wildcards, such as those used by RFAM, are not understood in this version and will be replaced
by Ns. If you would like support for other DNA / RNA alphabets, please let me know.

3.1.3 Determining sequence type

By default, MUSCLE looks at the first 100 |etters in the input sequence data (excluding gaps). If 95% or
more of those letters are valid nucleotides (AGCTUN), then the fileis treated as nucleotides, otherwise as
amino acids. This method almost always guesses correctly, but you can make sure by specifying the
seguence type on the command line. This is done using the —seqtype option, which can take the following
values:

—seqtype protein Amino acid
—seqtype nucleo Nucleotide
—seqtype auto Automatic detection (default).

3.2 Output files

By default, output is also written in FASTA format. All letters are upper-case and gaps are represented by
dashes"-".

3.2.1 Sequence grouping

By default, MUSCLE re-arranges sequences so that similar sequences are adjacent in the output file. (This
is done by ordering sequences according to a prefix traversal of the guide tree). This makes the alignment
easier to evaluate by eye. If you want to the sequences to be output in the same order as the input file, you
can use the —stable option.

3.3 CLUSTALW format

Y ou can request CLUSTALW output by using the —clw option. This should be compatible with
CLUSTALW, with the exception of the program name in the file header. Y ou can ask MUSCLE to
impersonate CLUSTALW by writing "CLUSTAL W (1.81)" as the program name by using —clwstrict.
Note that MUSCLE allows duplicate sequence labels, while CLUSTALW forbids duplicates. If you use the
—stable option of muscle, then the order of the input sequencesis preserved and sequences can be
unambiguously identified even if the labels differ. If you have problems parsing MUSCLE output with
scripts designed for CLUSTALW, please let me know and I'll do my best to provide afix.

3.4 MSF format

MSF format, as used in the GCG package, is requested by using the —msf option. Aswith CLUSTALW
format, thisis easier for people to read than FASTA. Gaps are represented by atilde (~). In MUSCLE 3.52,
the M SF format has been tweaked to be more compatible with GCG. The following differences remain.

(8) MUSCLE truncates at the first white space or after 63 characters, which ever comesfirst. The GCG
package apparently truncates after 10 characters. If thisis a problem for you, please let me know and I'll
add an option to truncate after 10 in afuture version.

(b) MUSCLE alows duplicate sequence labels, while GCG forbids duplicates. If you use the —stable option
of muscle, then the order of the input sequences is preserved and sequences can be unambiguously
identified even if the labels differ.

Thanks to Eric Martel for help with improving GCG compatibility.

3.5 HTML format

I've added an experimental feature starting in version 3.4. To get a Web page as output, use the —html
option. The alignment is colored using a color scheme from Eric Sonnhammer's Belvu editor, which is my
personal favorite. A drawback of this option is that the Web page typically contains a very large number of
HTML tags, which can be slow to display in the Internet Explorer browser. The Netscape browser works
much better. If you have any ideas about good ways to make Web pages, please let me know.

4 Using MUSCLE

In this section we give more details of the MUSCLE algorithm and the more important options offered by
the muscle implementation.

4.1 How the algorithm works

| won't give a complete description of the MUSCLE algorithm here—for that, you will have to read the
papers. (See citations on title page above). But hopefully a summary will help explain what some of the
command-line options do and how they might be useful in your work.

Thefirst step isto calculate atree. In CLUSTALW, thisis done as follows. Each pair of input sequencesis
aligned, and used to compute the pair-wise identity of the pair. Identities are converted to a measure of
distance. Finally, the distance matrix is converted to atree using a clustering method (CLUSTALW uses
neighbor-joining). If you have 1,000 sequences, there are (1,000~ 999)/2 = 499,500 pairs, so aligning
every pair can take awhile. MUSCLE uses a much faster, but somewhat more approximate, method to
compute distances: it counts the number of short sub-sequences (known as k-mers, k-tuples or words) that
two sequences have in common, without constructing an alignment. Thisistypically around 3,000 times
faster that CLUSTALW's method, but the trees will generally be less accurate. We call this step "k-mer
clustering"”.

The second step is to use the tree to construct what is known as a progressive alignment. At each node of
the binary tree, a pair-wise alignment is constructed, progressing from the leaves towards the root. The first
alignment will be made from two sequences. Later alignments will be one of the three following types:
sequence-sequence, profile-sequence or profile-profile, where "profile" means the multiple alignment of the
sequences under a given internal node of the tree. Thisis very similar to what CLUSTALW does once it
has built atree.

Now we have a multiple alignment, which has been built very quickly compared with conventional

methods, mainly because of the distance calculation using k-mers rather than alignments. The quality of

this alignment is typically pretty good—it will often tie or beat a T-Coffee alignment on our tests. However,
on average, we find that it can be improved by proceeding through the following steps.

From the multiple alignment, we can nhow compute the pair-wise identities of each pair of sequences. This
gives us a hew distance matrix, from which we estimate a new tree. We compare the old and new trees, and
re-align subgroups where needed to produce a progressive multiple alignment from the new tree. If the two
trees are identical, there is nothing to do; if there are no subtrees that agree (very unusual), then the whole
progressive alignment procedure must be repeated from scratch. Typically we find that the tree is pretty

stable near the leaves, but some re-alignments are needed closer the root. This procedure (compute pair-
wise identities, estimate new tree, compare trees, re-align) isiterated until the tree stabilizes or until a
specified maximum number of iterations has been done. We call this process "tree refinement”, although it
also tends to improve the alignment.

We now keep the tree fixed and move to a new procedure which is designed to improve the multiple
alignment. The set of sequencesis divided into two subsets (i.e., we make a bipartition on the set of
seguences). A profileis constructed for each of the two subsets based on the current multiple alignment.
These two profiles are then re-aligned to each other using the same pair-wise alignment algorithm as used
in the progressive stage. If thisimproves an "objective score” that measures the quality of the alignment,
then the new multiple alignment is kept, otherwise it is discarded. By default, the objective scoreis the
classic sum-of-pairs score that takes the (sequence weighted) average of the pair-wise alignment score of
every pair of sequences in the alignment. Bipartitions are chosen by deleting an edge in the guide tree, each
of the two resulting subtrees defines a subset of sequences. This procedure is called "tree dependent
refinement”. One iteration of tree dependent refinement tries bipartitions produced by deleting every edge
of the tree in depth order moving from the leaves towards the center of the tree. Iterations continue until
convergence or up to a specified maximum.

For convenience, the major stepsin MUSCLE are described as "iterations”, though the first three iterations
all do quite different things and may take very different lengths of time to complete. The tree-dependent
refinement iterations 3, 4 ... are true iterations and will take similar lengths of time.

Iteration Actions

1 Distance matrix by k-mer clustering, estimate tree, progressive alignment
according to thistree.

2 Distance matrix by pair-wise identities from current multiple alignment, estimate
tree, progressive alignment according to new tree, repeat until convergence or
specified maximum number of times.

3,4.. Tree-dependent refinement. One iteration visits every edge in the tree one time.

4.2 Command-line options

There are two types of command-line options: value options and flag options. Vaue options are followed
by the value of the given parameter, for example —in <filename>; flag options just stand for themselves,
such as—mnsf. All options are a dash (not two dashes!) followed by along name; there are no single-letter
equivalents. Value options must be separated from their values by white space in the command line. Thus,
muscle does not follow Unix, Linux or Posix standards, for which we apologize. The order in which
options are given isirrelevant unless two options contradict, in which case the right-most option silently
wins.

4.3 The maxiters option

Y ou can control the number of iterations that MUSCLE does by specifying the —-maxiters option. If you
specify 1, 2 or 3, then thisis exactly the number of iterations that will be performed. If the value is greater
than 3, then muscle will continue up to the maximum you specify or until convergence is reached, which
ever happens sooner. The default is 16. If you have alarge number of sequences, refinement may be rather
dow.

4.4 The maxtrees option

This option controls the maximum number of new treesto create in iteration 2. Our experience suggests
that a point of diminishing returnsis typically reached after the first tree, so the default valueis 1. If a
larger value is given, the process will repeat until convergence or until this number of trees has been
created, which ever comesfirst.

4.5 The maxhours option

If you have alarge alignment, muscle may take a long time to complete. It is sometimes convenient to say
"I want the best alignment | can get in 24 hours" rather than specifying a set of options that will take an
unknown length of time. Thisis done by using —maxhours, which specifies a floating-point number of
hours. If thistime is exceeded, muscle will write out current alignment and stop. For example,

muscle -in huge.fa -out huge.afa -maxiters 9999 -nmaxhours 24.0

Note that the actual time may exceed the specified limit by afew minutes while muscle finishesup on a
step. It isaso possible for no alignment to be produced if the time limit is too small.

4.6 The maxmb option

If the amount of memory needed by MUSCL E exceeds available physical RAM, then the operating system
will probably begin paging (i.e., swapping memory to and from hard disk), causing MUSCLE to run very
dowly. Thisis especially problematic when MUSCLE is used for batch processing, where one or two very
large alignments can cause a batch to effectively hang. Starting in version 3.52, MUSCLE attempts to limit
the amount of memory used. If the limit is exceeded, MUSCLE quits, saving the best alignment so far
produced (if any). MUSCLE attempts to determine the amount of physical RAM by making an appropriate
operating system call. Under Linux and Windows, this works well. On other systems, particularly other
flavors of Unix, MUSCLE doesn't know how to query the system and assumes that there is 500 Mb of
RAM. To override this default, you can specify the maximum number of megabytes to allocate by using the
—maxmb option, for example to set alimit of 1.5 Gb:

nmuscle -in huge.fa -out huge.afa -maxhours 1.0 -nmaxnb 1500

This feature has been hacked on top of code that wasn't really designed for it. So it doesn't always work
perfectly, but is better than nothing. The ideal solution would be to implement linear space dynamic
programming code (e.g., the Myers-Miller algorithm) for situations where memory istight. One day |
might do thisif there is sufficient interest. If you are interested in contributing the code, e.g. for aclass
project, please let me know, I'll be glad to provide support.

4.7 The profile scoring function

Three different protein profile scoring functions are supported, the log-expectation score (e option) and a
sum of pairs score using either the PAM200 matrix (—sp) or the VTML 240 matrix (—sv). The log-
expectation score is the default asit gives better results on our tests, but is typically somewhere between
two or three times slower than the sum-of-pairs score. For nucleotides, —spn is currently the only option
(which is of course the default for nucleotide data, so you don't need to specify this option).

4.8 Diagonal optimization

Creating a pair-wise alignment by dynamic programming requires computing an L; © L, matrix, where L,
and L, are the sequence lengths. A trick used in algorithms such as BLAST isto reduce the size of this
matrix by using fast methods to find "diagonals", i.e. short regions of high similarity between the two
sequences. This speeds up the agorithm at the expense of some reduction in accuracy. MUSCLE uses a
technique called k-mer extension to find diagonals. It is disabled by default because of the slight reduction
in average accuracy and can be turned on by specifying the —diags option. To enable diagonal optimization
in the first iteration, use —diagsl, to enable diagonal optimization in the second iteration, use —diags2.
These are provided separately because it would be a reasonabl e strategy to enable diagonalsin the first
iteration but not the second (because the main goal of the first iteration isto construct a multiple alignment
quickly in order to improve the distance matrix, which is not very sensitive to alignment quality; whereas
the goal of the second iteration is to make the best possible progressive alignment).

4.9 Anchor optimization

Tree-dependent refinement (iterations 3, 4 ...) can be speeded up by dividing the alignment vertically into
blocks. Block boundaries are found by identifying high-scoring columns (e.g., a perfectly conserved

column of Cs or Wswould be a candidate). Each vertical block is then refined independently before
reassembling the complete alignment, which is faster because of the L? factor in dynamic programming
(e.g., suppose the alignment is split into two vertical blocks, then 2~ 0.5% = 0.5, so the dynamic
programming time is roughly halved). The —noanchors option is used to disable this feature. This option
has no effect if —maxiters 1 or —-maxiters 2 is specified. On benchmark tests, enabling anchors has little or
no effect on accuracy, but if you want to be very conservative and are striving for the best possible
accuracy then —noanchorsis a reasonabl e choice.

4.10 Log file

Y ou can specify alog file by using - og <filename> or - oga <filename>. Using —log causes any existing
file to be deleted, - oga appends to any existing file. A message will be written to the log file when muscle
starts and stops. Error and warning messages will also be written to the log. If —verbose is specified, then
more information will be written, including the command line used to invoke muscle, the resulting internal
parameter settings, and also progress messages. The content and format of verbose log file output is subject
to change in future versions.

The use of alog file may seem contrary to Unix conventions for using standard output and standard error. |
like these conventions, but never found afully satisfactory way to use them. | like progress messages (see
below), but they mess up afile if you re-direct standard error and there are errors or warning messages too.
| could try to detect whether a standard file handleis atty device or a disk file and change behavior
accordingly, but | regard this as too complicated and too hard for the user to understand. On Windows it
can be hard to re-direct standard file handles, especially when working in a GUI debugger. Maybe one day
I will figure out a better solution (suggestions welcomed).

I highly recommend using —verbose and —og[a], especially when running muscle in a batch mode. This
enables you to verify whether a particular alignment was completed and to review any errors or warnings
that occurred.

4.11 Progress messages

By default, muscle writes progress messages to standard error periodically so that you know it's doing
something and get some feedback about the time and memory requirements for the alignment. Hereisa
typical progress message.

00: 00: 23 25 Mo (5% Iter 2 87.20% Build guide tree
Thefields are as follows.

00: 00: 23 Elapsed time since muscle started.

25 M (5% Peak memory use in megabytes (i.e., not the current usage, but the
maximum amount of memory used since muscle started). The number in
parentheses is the fraction of physical memory (see —maxmb option for
more discussion).

Iter 2 Iteration currently in progress.
87.20% How much of the current step has been completed (percentage).
Buil d. .. A Drief description of the current step.

The —quiet command-line option disables writing progress messages to standard error. If the —verbose
command-line option is specified, a progress message will be written to the log file when each iteration
completes. So —quiet and —verbose are not contradictory.

4.12 Running out of memory

The muscle code tries to deal gracefully with low-memory conditions by using the following technique. A
block of "emergency reserve" memory is alocated when muscle starts. If alater request to allocate memory
fails, this reserve block is made available, and muscle attempts to save the current alignment. With luck, the

10

reserved memory will be enough to allow muscle to save the alignment and exit gracefully with an
informative error message. See also the —maxmb option.

4.13 Troubleshooting

Here is some general advice on what to do if muscle fails and you don't understand what happened. The
code is designed to fail gracefully with an informative error message when something goes wrong, but
there will no doubt be situations | haven't anticipated (not to mention bugs).

Check the MUSCLE web site for updates, bug reports and other relevant information.

http://www.drive5.com/muscle

Check theinput file to make sureitisin valid FASTA format. Try giving it to another sequence analysis
program that can accept large FASTA files (e.g., the NCBI formatdb utility) to seeif you get an
informative error message. Try dividing the file into two halves and using each half individually asinput. If
one half fails and the other does not, repeat until the problem islocalized as far as possible.

Use -og or - oga and —verbose and check the log file to see if there are any messages that give you a hint
about the problem. Look at the peak memory requirements (reported in progress messages) to seeif you
may be exceeding the physical or virtual memory capacity of your computer.

If muscle crashes without giving an error message, or hangs, then you may need to refer to the source code
or use adebugger. A "debug" version, muscled, may be provided. Thisis built from the same source code
but with the DEBUG macro defined and without compiler optimizations. This version runs much more
slowly (perhaps by afactor of three or more), but does alot more internal checking and may be able to
catch something that is going wrong in the code. The —core option specifies that muscle should not catch
exceptions. When —core is specified, an exception may result in a debugger trap or a core dump, depending
on the execution environment. The —nocore option has the opposite effect. In muscle, —nocore is the defaullt,
—coreisthe default in muscled.

4.14 Technical support

| am happy to provide support. But | am busy, and am offering this program at no charge, so | ask you to
make a reasonable effort to figure things out for yourself before contacting me.

5 Command Line Reference

Value option Legal values Default Description

anchor spaci ng I nteger 32 Minimum spacing between anchor columns.
center Floating point [1 Center parameter. Should be negative.
clusterl upgma upgnb Clustering method. clusterl is used in iteration
cluster2 upgnb 1and 2, cluster2 in later iterations.

nei ghborj oi ni ng

di agbr eak Integer 1 M aximum distance between two diagonals
that allows them to merge into one diagonal.

di agl engt h Integer 24 Minimum length of diagonal.
di agmargi n Integer 5 Discard this many positions at ends of
diagonal.
di stancel kner 6_6 Kner 6_6 Distance measure for iteration 1.
kmer 20_3 (am no) or
kmer 20_4 Kmer 4_6

11

Value option

Legal values

Default

Description

di st ance2

gapopen

hydro

hydr of act or

in

inl

in2

| og

| oga

maxhour s

maxiters

maxnb

maxt rees

m nbest col score

m nsnoot hscor e

obj score

kbi t20_3
kmer 4_6

kmer 6_6

kmer 20_3
kmer 20_4

kbi t20_3
pctid_kimura
pctid_| og

Floating point

Integer

Floating point

Any file name
Any file name
Any file name
File name
File name

Floating point

Integer 1,2 ...

Integer

Integer

Floating point

Floating point

sp
ps
dp
Xp
spf
spm

(nucl eo)

pctid_kimura

(1]

standard input
None
None
None.
None.

None.

16

80% of

Physi cal RAM
or 500 Mo i f
not known.

1

(1]

(1]

spm

12

Distance measure for iterations 2, 3 ...

The gap open score. Must be negative.

Window size for determining whether a
region is hydrophobic.

Multiplier for gap open/close penaltiesin
hydrophobic regions.

Where to find the input sequences.
Where to find an input alignment.
Where to find an input alignment.

Log file name (delete existing file).
Log file name (append to existing file).

Maximum timeto run in hours. The actual
time may exceed the requested limit by afew
minutes. Decimals are allowed, so 1.5 means
one hour and 30 minutes.

Maximum number of iterations.

Maximum memory to allocate in Mb.

Maximum number of new treesto build in
iteration 2.

Minimum score a column must have to be an
anchor.

Minimum smoothed score a column must
have to be an anchor.

Objective score used by tree dependent
refinement.

sp=sum-of-pairs score.

spf=sum-of-pairs score (dimer approximation)
spm=sp for < 100 segs, otherwise spf
dp=dynamic programming score.

ps=average profile-sequence score.

Xp=cross profile score.

Value option

Legal values

Default

Description

out

rootl
root 2

seqt ype

snoot hscor ecei

snoot hwi ndow

spscore

SUEFF

treel
tree2

usetree

wei ght 1
wei ght 2

File name

pseudo
m dl ongest span
m navgl eaf di st

protein
nucl eo
aut o

Floating point

Integer

File name

Floating point
value between 0
and 1.

File name

File name

none
heni kof f
heni kof f pb
gsc
clustal w

t hr eenay

standard output

psuedo

auto

(1]

None

None

clustalw

13

Where to write the alignment.

Method used to root tree; rootl isused in
iteration 1 and 2, root2 in later iterations.

Sequence type.

Maximum value of column score for
smoothing purposes.

Window used for anchor column smoothing.

Compute SP objective score of multiple
alignment.

Constant used in UPGMB clustering.
Determines the relative fraction of average
linkage (SUEFF) vs. nearest-neighbor linkage
(1 - SUEFF).

Save tree produced in first or second iteration
to given filein Newick (Phylip-compatible)
format.

Use given tree as guide tree. Must by in
Newick (Phyip-compatible) format.

Sequence weighting scheme.
weightlisusediniterations 1 and 2.

weight2 is used for tree-dependent refinement.
none=all sequences have equal weight.
henikoff=Henikoff & Henikoff weighting
scheme.

henikoffpb=Modified Henikoff scheme as
used in PSI-BLAST.

clustalw=CLUSTALW method.
threeway=Gotoh three-way method.

Flag option Set by default? Description

anchors yes Use anchor optimization in tree dependent refinement
iterations.

brenner no Use Steven Brenner's method for computing the root
alignment.

cluster no Perform fast clustering of input sequences. Use the —treel
option to save the tree.

di ner no Use dimer approximation for the SP score (faster, slightly less
accurate).

clw no Write output in CLUSTALW format (default is FASTA).

clwstrict no Write output in CLUSTALW format with the"CLUSTAL W
(1.81)" header rather than the MUSCLE version. Thisis
useful when a post-processing step is picky about the file
header.

core yesin muscle, Do not catch exceptions.

no in muscled.

di ags no Use diagonal optimizations. Faster, especially for closely
related sequences, but may be less accurate.

di ags1 no Use diagonal optimizationsin first iteration.

di ags2 no Use diagonal optimizationsin second iteration.

fasta yes Write output in FASTA format. Alternatives include —lw,
—clwstrict, —msf and —html.

group yes Group similar sequences together in the output. Thisisthe
default. See also —stable.

ht m no Write output in HTML format (default is FASTA).

le maybe Use log-expectation profile score (VTML240). Alternatives
areto use —sp or —sv. Thisisthe default for amino acid
sequences.

s f no Write output in MSF format (default is FASTA). Designed to
be compatible with the GCG package.

noanchor s no Disable anchor optimization. Default is—anchors.

nocore no in muscle, Catch exceptions and give an error message if possible.

yesin muscled.

profile no Compute profile-profile alignment. Input alignments must be
given using —inl and —in2 options.

qui et no Do not display progress messages.

refine no Input file is already aligned, skip first two iterations and begin

14

Flag option Set by default? Description
tree dependent refinement.

sp no Use sum-of-pairs protein profile score (PAM200). Default is
e

spscore no Compute alignment score of profile-profile alignment. Input
alignments must be given using —in1 and —in2 options. These
must be pre-aligned with gapped columns as needed, i.e. must
be of the same length (have same number of columns).

spn maybe Use sum-of-pairs nucleotide profile score. Thisisthe only
option for nucleotides, and is therefore the default. The
substitution scores and gap penalty scores are "borrowed"
from BLASTZ.

stabl e no Preserve input order of sequences in output file. Default isto
group sequences by similarity (—group).

sv no Use sum-of-pairs profile score (VTML240). Default is—le.

terngaps4 yes Use 4-way test for treatment of terminal gaps. (Cannot be
disabled in this version).

terngapsful | no Terminal gaps penalized with full penalty.
[1] Not fully supported in this version.

terngapshal f yes Terminal gaps penalized with half penalty.
[1] Not fully supported in this version.

terngapshal fl onger o Terminal gaps penalized with half penalty if gap relative to
longer sequence, otherwise with full penalty.
[1] Not fully supported in this version.

ver bose no Write parameter settings and progress messages to log file.

version no Write version string to stdout and exit.

Notes

[1] Default depends on the profile scoring function. To determine the default, use —verbose —log and check

thelog file.

15

